CHIRAL PROSTANOID INTERMEDIATES FROM AUCUBIN W.F. Berkowitz*, I. Sasson, P.S. Sampathkumar, J. Hrabie, S. Choudhry, D. Pierce The City University of New York, Queens College Chemistry Department Flushing, New York 11367

Summary: Several potentially useful prostanoid intermediates have been prepared from aucubin. Dry DMSO-NBS converts enol ethers to α -bromoesters in one step.

Ohno and coworkers quite recently reported¹ their ingenious conversion of aucubin (<u>1</u>) to (+)-11 - deoxy-lla-hydroxymethyl prostaglandin $F_{2\alpha}$ (<u>2</u>)¹⁻⁴. As we have been pursuing an alternate path⁵ to the same goal, we would like to report our progress. Our primary target is the homolog (<u>3</u>) of the well-known Corey lactone-aldehyde, and the work is summarized in Scheme I.

Schmid⁶ devised a four step procedure for the conversion of $\operatorname{aucubin}(\underline{1})$ to lactone-hexaacetate 7. This involved 1) acetylation to $\underline{4}$, 2) conversion to bromohydrin (bromohemiacetal) $\underline{5}$ (mp 151°C) with $\operatorname{Br}_2-\operatorname{H}_2O/\operatorname{THF}$, 3) oxidation (CrO₃/HOAc) to bromolactone $\underline{6}$ (mp 166°), and 4) reduction (Zn/HOAc) to lactone 7 (mp 175°)⁶. In our hands, steps 2 and 3 gave poor yields (35 and 50% respectively).

To improve step 2 we tried Dalton's procedure $(NBS-H_2O/DMSO)^7$, which converted 4 to a mixture of three bromohydrins (Hplc showed 8, 3 parts and <u>9a+9b</u>, 1 part: total yield 95%), from which <u>8</u> (mp 136^o) crystallized in 65% yield. Jones oxidation of <u>8</u> gave an excellent yield of the same bromolactone obtained previously from <u>5</u> (proving thereby that <u>5</u> and <u>8</u> are hydroxyl epimers).

Bromohydrins <u>9a</u> and <u>9b</u> proved to be inseparable, and therefore the crude mother liquors remaining after separation of <u>8</u> were oxidized (Jones) directly, affording an excellent yield of a second bromolactone, 10 (mp 123°) (proving therby that 9a and 9b are also hydroxyl epimers).

Both bromolactones <u>6</u> and <u>10</u> were reduced by Zn/HOAc to lactone <u>7</u> (proving thereby that they are bromine epimers).

We subsequently discovered that the use of <u>dry</u> DMSO (distilled from CaH₂) with NBS gave, in 90% yield, a mixture of bromolactones <u>6</u> and <u>10</u> (3:1, resp.) <u>directly</u> from <u>4</u>⁸. (Direct reduction of this mixture gave <u>7</u> in 90% yield.) Application of this new reaction to dihydropyran gave α -bromo- δ -valerolactone (62%); cyclohexene gave α -bromocyclohexanone (63%).

Hydrogenation of $\underline{7}$ over PtO₂ or Pd/C in EtOAc, EtOH, HOAc, dioxane or water (or mixtures), at -25 to 25°C and 1 to 100 atm., gave mainly products with extensive hydrogenolysis of the allylic acetate groups. On the other hand, hydrogenation of $\underline{7}$ over 5% Rh/C, in EtOAc at 4 atm., gave a 1:1 mixture of <u>11</u> and <u>12</u> (95% total). At 1 atm., <u>11</u> and <u>12</u> were formed in a 1:4 ratio (95%), and pure <u>12</u> crystallized directly from the reaction mixture in over 75% yield.

Methanolysis of epimer <u>12</u> gave only lactol <u>15</u> (82%) (with no trace of aldehyde <u>16</u> evident by nmr). On the other hand, <u>11</u> gave a mixture of lactol <u>14</u> (28%) and aldehyde <u>13</u> (50%), separated by preparative HPLC. In order to determine the relative orientation of the hydroxymethyl side chain,

lactols <u>14</u> and <u>15</u> were oxidized (Jones), respectively, to keto-lactones <u>17</u> (20%)¹⁰ and <u>18</u> (95%). The structures of <u>17</u> and <u>18</u> were confirmed by X-ray analysis, kindly performed by Dr. John Blount (Hoffmann-LaRoche). The absolute stereochemistry of these compounds is inferred from that of aucubin¹¹, and is the same (at iridoid C-5) as that of the prostanoids (at prostanoid C-8).

Aucubin was isolated from Aucuba japonica¹² by the procedure of Duff¹³: hot water extraction. concentration in vac, and partition chromatography on Celite with water-saturated n-butanol. We have easily accumulated over 500 g. of aucubin by this method (1% of fresh plant weight).

At present we are attempting the conversion of <u>13</u> to <u>3</u> by inversion of the secondary hydroxyl group and subsequent lactone ring closure. A similar sequence applied to <u>15</u> should afford the β epimer of <u>3</u>.

References and Notes

- 1) M. Naruto, K. Ohno, N. Naruse and H. Takeuchi, Tetrahedron Lett., 251 (1979).
- 2) G.L. Bundy, ibid., 1957 (1975).
- 3) A. Guzman and J.M. Muchowski, ibid., 2053 (1975).
- The llα-homo-PGE₂ cogener has also been prepared: see references 2, 3 and a) K. Sakai, J. Ide and O. Oda, <u>ibid</u>., 3021 (1975); b) J. Ide and K. Sakai. <u>ibid</u>., 1367 (1976).
- 5) This work was reported at the 176th ACS Meeting, Miami, Florida, September 1978, Organic Section Paper 90.
- 6) W. Wendt, W.H. Haegele, E. Simonitsch and H. Schmid, Helv. Chim. Acta, <u>43</u>, 1440 (1960).
- 7) D.R. Dalton, V.P. Dutta and D.C. Jones, J. Amer. Chem. Soc., 90, 5498 (1968).
- 8) Details of the scope and mechanism of this new reaction are presently under investigation.
- 9) Hydrogenation over Ru in wet EtOAc at 100 atm., or with Rh/Al₂0₃ in EtOAc at 1 atm. gave results similar to those obtained with Rh/C.
- Lactol <u>14</u> was oxidized with partial epimerization: Hplc separated <u>17</u> from the <u>enantiomer</u> of 18 (15%).
- 11) J.M. Bobbitt and K-P. Segebarth, "The Iridoid Glucosides and Similar Substances", Chapter 1 in "Cyclopentanoid Terpene Derivatives", W.I. Taylor and A.R. Battersby, editors (Marcel Dekker, N.Y., 1969).
- 12) We extracted leaves, twigs etc., obtained by pruning adult plants. Aucuba japonica is a very common plant. Our source: Ingleside Plantation Nurseries, Oak Grove, Westmoreland County, Va.
- 13) R.B. Duff et al., Biochem. J., 96, 1 (1965).
- 14) P. Karrer and H. Schmid, Helv. Chim. Acta 29, 525 (1946).
- 15) A.J. Birch, J. Grimshaw and H.R. Juneja, J. Chem. Soc., 5194 (1961).
- 16) This compound gave a satisfactory elemental analysis.
- 17) High Field NMR spectra were obtained at the Southern New England High Field NMR Facility at Yale University (270Mc) or at Rockefeller University (220Mc).
- 18) Ms. B. DeBarbieri (Hoffmann-LaRoche) was the gracious source of the high resolution mass spectra. Medium resolution (CI) spectra were obtained at Rockefeller University.

We gratefully acknowledge the support of NIH grant GM 22098 and CUNY grant 11088. In addition, the high pressure and large scale hydrogenations performed by Dr. William Jones (Merck) were of invaluable assistance.

SCHEME I

Ļ

Compound	Best% Yield	мр ^о с	α ^{23.1°} C	Additional Data
<u>1</u>	1.0	179-80		Lit.mp. 181 ¹⁴
<u>4</u>	87	127-7.5	-160.9	" " 128^{15} ; Lit. $\alpha_n^{15^{\circ}C}$ -156.6 ¹⁵
5	36	150-1d		" " 150d ⁶
$\frac{6^{16}}{16}$	90	165-5.5	-80.0	" " 165-6
<u>7</u> 16	92	174-4.5	-77.0	" " 174 ~ 5 ⁶
<u>8</u> 16	65	135-6		
10^{16}	90	122-3	-90.8	
<u>11</u> 16	47	140-1	-22.4	_
<u>12</u> 16	80	133-4	-28.8	" " 133–4 ⁶
<u>13</u>	50.2	oil	+10.5	M/e 217.1067 (calc. for M ⁺ +H: 217.1078) ¹⁸
14^{16}	28.5	72-3	-5.1	
$\frac{15}{10}$	82	110-11	-46.8	M/e 200 (M ⁺ +H-OH); ¹³ Cnmr: 1CH ₃ , 3CH ₂ , 5CH, 1C=0
$\frac{17^{16}}{17}$	20	111-2	-12.8	M/e 212; ir 1778, 1752, 1738 $\rm cm^{-1}$
<u>18</u> 16	95	79-80	+8.1	M/e 212; ir 1783, 1752, 1738 cm ⁻¹
Selected ¹ Hnmr data $(\delta/CDC1_3)^{17}$				
4	н.: 5	.19. d. J.	о=4; Но: (6.19, dd, J, ,=6, J, ,=2; H,: 4.94, dd, J, ,=6, J, ,=3;
_	ц Н _л : 5	.88, dd, J.	,9 · 3 , ₂ =2, J, .	$10^{=1}; H_{10}, 101; 4.76, s(br); 0COCH_2; 2.125, 2.119, 2.063, 1000$
	, 2.055	, 2.035.	·,0 · /,1	10 104,100 5
<u>7</u>	u · 5	66 J T	=2 5+ H	
	"1' ⁻	15 / · 00001	$9^{-2} \cdot 3^{-1} \cdot 7^{-1}$,0 ,0
11	a,b	62 at 000	3°	2.111, 2.000, 2.004, 2.000.
12	1^{-1} , 5.52 , $5,000003$, $2.10, 2.07, 2.03, 2.00, 2.00, 1^{-6}, 000000000000000000000000000000000000$			
<u><u> </u></u>	¹¹ , ³ 2,037	· 2.026. 2	,9 ⁻² , "10a, .004.	1,10b ¹ 4.12 (101), 310,8 ⁻⁰ , 0000 ² , 2.090, 2.070, 2.092,
13	CHO: 9.67. d. J=3.			
15	OH: 4.81 (DMSO-d), d. J=6 (D O labile): OH: 5.76 (DMSO-d), d. J=4 (D O labile):			
	H.: 5	.09 (DMSO-d	$f_{6}^{(1)}, f_{1}^{(2)}, f_{2}^{(3)}$	4 (→ s/D_0): COOCH_: 3.59. s.
	-1. 2		6, , _, ,	3

(Received in USA 5 January 1979)